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ABSTRACT

This is the first work that incorporates recent advancements in
“explainability” of machine learning (ML) to build a routing obfus-
cator called ObfusX. We adopt a recent metric—the SHAP value—
which explains to what extent each layout feature can reveal each
unknown connection for a recent ML-based split manufacturing
attack model. The unique benefits of SHAP-based analysis include
the ability to identify the best candidates for obfuscation, together
with the dominant layout features which make them vulnerable.
As a result, ObfusX can achieve better hit rate (97% lower) while
perturbing significantly fewer nets when obfuscating using a via
perturbation scheme, compared to prior work. When imposing the
same wirelength limit using a wire lifting scheme, ObfusX performs
significantly better in performance metrics (e.g., 2.4 times more
reduction on average in percentage of netlist recovery).
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1 INTRODUCTION

Manufacturing outsourcing of Integrated Circuits has become more
common than ever before because of the high cost of fabricat-
ing high-end chips. As a result, security issues including design
piracy and hardware Trojans injection may arise when an untrusted
foundry is involved in manufacturing. To alleviate these problems,
split manufacturing is proposed as a technique where the untrusted
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foundry only receives and fabricates a partial layout up to a metal
layer denoted by a “split level”. However, this may still not prevent
an attacker to extract the full design, if the layout is not obfuscated
or if the split level is too high, as suggested by [1-6].

Existing techniques on design obfuscation may be classified as
two categories: placement-based and routing-based. Placement-
based techniques include pin swapping [1], cell insertion [7], and
cell location perturbation [2]. Routing-based techniques include
routing blockage insertion [3], routing perturbation [8], and wire
lifting [9]. The two techniques may also been combined, as in [10].

The key idea of design obfuscation for split manufacturing is to
make an attack model fail to identify correct connections above
the split level. As for the attack models for split manufacturing,
Rajendran et al. first proposed the proximity attack [1]. Wang et al.
proposed a more advanced network-flow-based proximity attack
[2], which employs the network flow model that considers more
heuristics for better attack performance. Magana et al. proposed a
congestion based attack [3], which redefined proximity measures
based on the observation that placement and routing congestions
are better indicators in large commercial designs. Most recently,
Zeng et al. proposed a machine learning (ML) attack model [4],
trained with empirically-selected layout features that reflect the
hints from routing conventions.

In this paper, we propose a novel way to build an obfuscator
for split manufacturing, based on recent advancements in the area
of “explainability” of ML. We adopt a recent explanatory metric,
namely the SHapley Additive exPlanation (SHAP) value [11], to
analyze the ML attack model proposed in [4]. (The ML attack model
is especially suitable for large commercial designs while other attack
models (e.g. [2]) would take prohibitively long attack time.)

The SHAP-based analysis reveals to what extent each layout fea-
ture contributes to correctly predicting each individual unknown
connection as seen by an untrusted foundry. We then exploit this
information to design a SHAP-guided obfuscator against the ML
attack model where only truly vulnerable connections are identified
and each is obfuscated by just the necessary amount. This results
in minimal perturbation to the layout as measured by increase in
wirelength and number of perturbed nets. Our obfuscator (named
ObfusX) is routing-based and is performed by utilizing via pertur-
bation and wire lifting schemes. (Placement-based obfuscation was
not found to be as effective by our SHAP-based analysis.)

Overall, our contributions can be summarized as follows.

e This is the first work that shows how explainability in ma-
chine learning (ML) can be used to obfuscate a design; while
we focus on routing obfuscation for an ML-based split man-
ufacturing attack, our approach is generalizable to build any
obfuscator as long as an ML attack model is available.
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o We demonstrate the benefits of ObfusX in identifying and
focusing on the most vulnerable candidates and obfuscating
each by just the right amount, thereby reducing the obfusca-
tion overhead, while having better performance.

® Our results are compared with two prominent prior works,
using not only the ML attack, but also an independent net-
work flow-based attack from a recent work.

2 PRELIMINARIES

To build an obfuscator, we use an explanatory model named SHAP
to break a ML-based attack. Here, we review the ML attack model
used by our work and then give a brief overview of SHAP analysis.

2.1 ML Attack Model for Split Manufacturing

Given a metal layer as the split level, the layout is partitioned into
public layers, v-pins (as termed in [4]) and private layers from low to
high levels. A split layer refers to the topmost metal layer available
to the attacker; public layers refer to all metal on or below the split
layer and via layers in between; private layers are all metal layers
above the split layer and the via layers in between; v-pins are vias
connecting public and private layers. The attacker has access to the
layout (cells, pins, wires, vias) in public layers and all v-pins. The
goal of the split manufacturing attack is to predict the connectivity
on private layers based on the available layout on public layers.

Recently, a ML-based attack model was proposed for split manu-
facturing in [4]. To build the ML model, for each pair of v-pins in
a design, first a vector of layout “features” was extracted from the
public layers. Using these features, the ML model was built based
on Bagging of 10 reduced error pruning trees (REPTrees) in Weka
[12]. The ML model mapped each v-pin pair with feature vector x
to a probability f(x) € [0, 1], indicating how likely the v-pin pair is
a “match” (i.e. actually connected to each other on private layers).

For a pair of v-pins, the following features were extracted in [4].
(We refer the reader to [4] for more details.)

e diffVpinX, diffVpinY: The x- and y-direction differences
in the locations of the two underlying v-pins, respectively.

e manhattanVpin: The Manhattan distance of the v-pins.

o diffPinX/Y,manhattanPin: These are similarly defined but
for pins (connected to the v-pin pair) at the placement level.

e totalWirelLength: Wirelengths of wires connected to the
v-pin pair on public layers.

e totalCellArea, diffCellArea: These are sum (or diff) of
the average area of output cells and that of input cells.

2.2 SHAP Tree Explainer for Machine Learning
In this work, we adopt a recently proposed explanatory model

named SHAP [11], which explains predictions from a ML model.

Let f(x;) denote the ML prediction output of the i-th testing sample
with feature vector x;. SHAP decomposes the model output as

M
foa) =BIf (O] + ) e, )
=
where E[ f(x)] is the expected prediction based on all training data,
and c; j is the contribution of the j-th feature of the i-th testing
sample, which can be positive, negative, or zero. Each ¢; j indicates
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Figure 1: Flow chart of ObfusX.

to what extent the j-th feature deviates the i-th sample’s prediction
from the average. The SHAP value is proposed as an excellent
candidate to compute the c; js in (1). SHAP values show how each
feature contributes to the model output for each testing sample.

A recent extension [13], referred to as SHAP tree explainer, shows
that the exact evaluation of SHAP values can be done in polynomial
time exclusively for tree-based models (which is compatible with
the aforementioned ML attack model). The SHAP tree explainer
does not assume feature independence, as feature interactions are
already captured in the underlying trees. In this paper, we will use
the SHAP tree explainer to analyze the vulnerability of individual
v-pin pairs to the attack and use it to guide the obfuscation.

3 OVERVIEW OF OBFUSX

The core idea of a SHAP-guided obfuscation is to perturb the design,
such that a ML attack model would perform worse. As we will
show in experiments, such obfuscation also performs well under
an independent, non-ML, attack model [2]. This is because both
attack models are based on a similar set of design conventions in
routing tools that aim to optimize the wirelength, delay, etc. A flow
chart of the overall process of ObfusX is shown in Figure 1.

The upper panel shows how the ML model is developed. To
generate the training set and testing set for a design to obfuscate
(i.e., “target design”), we generate data samples by extracting layout
features from routed designs, with the same split layer applied as
will be used in manufacturing. All data samples from the target
design are allocated in the testing set, which we will use to monitor
the progress and performance of obfuscation. Other designs in the
same benchmark suite as the target design are used to generate the
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Figure 2: SHAP force plots of two actually-connected v-pin pairs. The pink/blue bars (to the left/right of output values, respec-
tively) quantify to what extend each layout feature positively/negatively contributes to the ML attack that predicts their con-
nectivity. The top contributing features (longest pink bars) may vary from one v-pin pair to another. For example, diffVpinY is
the most contributing feature in predicting (a) (longest pink bar) while it is actually the most negatively contributing feature

to predicting (b) (longest blue bar).

training set that will be used to train the attack model. As mentioned
in Section 2, ObsufX uses the ML predictor in [4]. With a trained
attack model, it predicts how likely each pair of (two) v-pins in the
target design could be a match (i.e., are actually connected), which
can be interpreted as the vulnerability of the pair to the ML attack.

To develop ObfusX, as shown in the lower panel, the ML pre-
diction for a v-pin pair is fed to the SHAP tree explainer, which
generates a set of SHAP values to explain the prediction.

Each SHAP value corresponds to an extracted feature and quan-
tifies to what extent that feature contributes to the ML predictor
for that specific v-pin pair. These SHAP values are next analyzed
across all actually-connected v-pin pairs to identify the most vul-
nerable ones to the ML attack, along with the layout features that
contribute the most to their individual vulnerabilities.

Next, the output of SHAP analysis guides the actual obfuscation
which is done iteratively. ObfusX utilizes two layout perturbation
techniques—via perturbation and wire lifting—each of which effec-
tively change the routing and locations of a vulnerable v-pin pair.
At each iteration, the most vulnerable v-pin pair is obfuscated if its
obfuscation does not violate routing feasibility. Next, the feature
vector of the obfuscated pair is updated and consequently its vul-
nerability is re-evaluated by the attack model (given that the layout
has been slightly perturbed). ObfusX then proceeds to obfuscate
the next vulnerable pair, until there is no more vulnerable pair, or

a budget of wirelength (WL) overhead is reached.

4 SHAP ANALYSIS FOR ONE V-PIN PAIR

Before discussing the details of ObfusX, we first explain how SHAP-
based analysis is performed for a single pair of connected v-pins.
This helps us to illustrate the true benefits of such analysis in
building ObfusX. Consider two connected v-pins from the design
superbluel with split layer M6. The ML attack model, predicts this
pair to be connected with probability 0.96 (which is a relatively high
prediction indicating a successful attack if there is no obfuscation).

Figure 2(a) shows the force plot generated by SHAP analysis per-
formed on the ML prediction for this pair. The color and length of
pink/blue bars show the sign and magnitude of c; ;s in Equation (1),
respectively. For the pair in Figure 2(a), the analysis breaks down
the prediction output of 0.96 as sum of a base value of 0.5 and a total
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deviation of +0.46. The pink/blue bars correspond to the features
which positively/negatively contribute to the model output (i.e.,
with a positive/negative “force” pushing towards this 0.96 predic-
tion). The length of the bars indicate the degree of contribution
such that the sum of the lengths of pink bars (with positive sign)
and blue bars (with negative sign) adds up to +0.46.

More specifically, for pair (a), among all its features, diffVpinY
has the highest SHAP value of around +0.4 (corresponding to
the length of its pink bar). Figure 2(b) shows the force plot for
a second pair (b). For pair (b), we observe a different feature, ie.,
manhattanVpin is dominant. Moreover, diffVpinY, which was the
top feature in (a), has a negative SHAP value in (b), indicating it
actually contributes negatively to the prediction of pair (b).

The above example yields the following two key observations to
illustrate the unique benefits of SHAP analysis for obfuscation:

1. The vulnerable v-pin pairs can be identified as the ones
which have few features with large positive SHAP values.

2. The top feature may vary across individual pairs, implying a
different degree or scheme of obfuscation is needed for each.

5 DETAILS OF OBFUSX

The goal of SHAP-guided obfuscation is to alter the SHAP values
such that there will not be any dominant feature with a high positive
SHAP. It could mean that obfuscation makes originally dominant
features to have a lower positive SHAP value or a negative one.

Qur SHAP analysis of design superbluel with split layer M6,
shows that for about half of the connected v-pin pairs, the SHAP
value of diffVpinY is consistently dominant (followed by that of
manhattanVpin). However for the other half of pairs, the distribu-
tion of SHAP values over features becomes fuzzy, which suggests
that no single feature dominates the model. Such pairs (which do
not have any dominant feature) do not need to be obfuscated.

For the two dominant features (diffVpinY and manhattanVpin)
in the above example, Figure 3 shows the distribution of the com-
bined contribution (i.e., sum of SHAP values) of these two top
features, before and after obfuscation. This is when using ObfusX
with via perturbation (which will be discussed in detail in Section
5.1). The before-obfuscation distribution is shown in blue and the
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Figure 3: Contributions of top two features diffVpinY and
manhattanVpin, shown as a distribution for all connected v-
pin pairs, before (blue) and after (red) obfuscation. ObfusX
flattens the distribution and decreases the top contributions.

after-obfuscation one is shown in red. As can be seen, ObfusX flat-
tens the distribution and shifts it to the left (so it decreases the top
contributions, making some less positive and some even negative).

Similar to the example of superbluel with split layer M6, SHAP-
based analysis with the rest of the designs showed that diffVpinY
and manhattanVpin are always the top two contributing features
for many of the vulnerable nets when the split layer is even. (For odd
split layers diffVpinY is replaced with diffVpinX because wires
are preferred to route vertically on even layers and horizontally on
odd layers.) The nets which did not have a dominant feature simply
won't need to be obfuscated with SHAP-guided analysis. Therefore,
these two features are the only ones which are utilized by ObfusX.

We note, these two dominant features are related to routing
which explains our choice to obfuscate the design with routing-
based techniques, i.e., via perturbation and wire lifting. However,
we note, our general approach is not restricted to routing.

5.1 ObfusX with Via Perturbation

The procedure for via perturbation only considers perturbing v-pin
pairs which are determined to be “essential”. Essential v-pin pairs
are a subset of all connected v-pin pairs, after disregarding trivial
cases, e.g., when some v-pins connect to each other using the public
layer, hence are easily identifiable by the attacker. ObfusX also
ensures feasibility of the routing throughout the process without
any area overhead. We first introduce the following which will be
used when explaining the algorithm.

5.1.1 Terminology. We introduce the following terminology as
shown in Figure 4(a), where the split layer is M4. Wires in all metal
layers are shown as horizontal lines and vias as vertical lines.

A driving pin is a pin that drives other components in the net. It
can be the output pin of a logic cell or that of a primary input.

A v-pin group consists of v-pins in the same net that connect to
each other using public layers. The v-pins in the same group can
be easily identified by an attacker because they are connected in
public layers that are available to the attacker.

A driving v-pin group is a v-pin group that connects to a driving
pin using public layers.
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A non-driving v-pin group is a v-pin group that does not connect
to any driving pin in public layers.

An essential v-pin pair (v,v") consists of a pair of v-pins, where v
is in a non-driving v-pin group G, and ¢’ is in a driving v-pin group
G'.If G’ has more than one v-pin, v’ is the closest v-pin to v in G’.

5.1.2  Algorithm. We propose an algorithm that perturbs the loca-

tions of v-pins based on SHAP values of the top features manhattanVpin

and diffVpinR where R is X for odd split layers and Y for even split
layers. This is done iteratively, one v-pin at a time. We first calculate
the SHAP values S(i, j) for all essential v-pin pairs i and all features
j- Then for each essential v-pin pair i, we take the maximum of
the SHAP values over all features j, i.e., Smax (i) = max; S(i, j). We
only perturb v-pins that satisfy the following criteria:
® The v-pin belongs to an essential v-pin pair p = (v,0"), with
v and v’ in the same net. This is to avoid duplicated or invalid
perturbations, e.g. perturbing the same v-pin later when a
different v-pin pair is being considered.

This ensures the essential v-pin pair p is vulnerable, i.e., likely
predictable with the top features.

S(p, diffVpinR) > S(p, diffVpinR’), where R’ € {X, Y} is
the routing direction other than R. This condition ensures
the effectiveness of perturbing v or v’ in R direction.

If there are more than one non-driving v-pin group in the net
of v and v’, then ¢" in the driving v-pin group is not eligible
for perturbation and only v may be perturbed. Otherwise,
perturbing v” may affect multiple essential v-pin pairs.

The procedures of SHAP-guided via perturbation are summa-
rized in Algorithm 1. We maintain a list £ of essential v-pin pairs
p = (v,0") sorted in decreasing order of Spax(p). As shown in Al-
gorithm 1 (lines 5-6), in each iteration, we select p from the top of
the list, and apply trial perturbing moves (a series of “dry runs” that
do not actually perturb) to each eligible v-pin in pair p within a
predefined small radius r (detailed in Algorithm 2) to find the most
efficient move (v*, §*) which means to move v-pin v* by amount §*.
Efficiency of a move is defined in terms of the decrease in the model
output —Af(x) and the extra WL AWL (as an integer). Specifically,
to quantify the efficiency of a move, we define its gain as

—Af(x)/AWL, ifAf(x) <0and AWL > 1
1-Af(x), ifAf(x) <0and AWL <0 ,
0, if Af(x) = 0 or not feasible

@)

gain =

which prioritizes moves that lead to a decrease in model output at
no or low extra cost of WL. The trial perturbing is necessary as it
would be difficult to estimate the routing feasibility and extra WL
without any trials due to complex layout congestion. After the trial
perturbing, if there is no feasible move, we remove pair p from £
(line 14), and proceed to the next v-pin pair in £; if there is any
feasible move (lines 7-11), we take the actual move that has the
highest gain, update the feature vector and the SHAP values (as in
Figure 1), re-check the v-pin eligibility, and go to the next iteration.

5.1.3 Rip-up and Reroute Procedure. To apply a perturbing move to
a v-pin v, we rip up and reroute the wires connecting v to the other
components. To facilitate the rerouting procedure, we rip up v and
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Figure 4: (a) Illustration of terminology. (b-d) Rip up and reroute for v-pin pair (v,0’) when v is perturbed. (b) Original wires
and vias of the net containing v and o’; the gray segments are to be removed. (¢c) The new location of v after perturbation is
identified. The unconnected parts (including both endpoints of v and rerouting goals) are identified in the public layers (shown
in black wires and dots) and private layers (shown in black circles). (d) The unconnected parts are reconnected (in blue).

Algorithm 1: VIa-PERTURBATION (L, R, r, N) Algorithm 2: TRIAL-PERTURBING (p, R, r)
Input: £: list of all essential v-pin pairs, R: perturbing 1 0* « null, 6* « null
direction, which is X for odd split layer and Y for 2 maxGain « 0
even split layer, r: radius for trial perturbing, N: s for eligible v in v-pin pair p do
maximum number of iterations. . for § « —r tor do
1 for iter < 1to N do 5 gain < RIPUP-AND-REROUTE (v, R, §) // move o in
2 if L is empty then R-dir by &
y
3 | break e .
6 if gain > maxGain then
1 end . . 7 v* 0,66
5 for p in L in descending order of Smax (p) do s maxGain < gain
6 (0*,8%) « TRIAL-PERTURBING (p, R, r) // Algo. 2 . end
7 if 0* # null then
// take the actual move N end
8 RipuP-AND-REROUTE (0%, R, §%) // Sec. 5.1.3 u end . o )
. Update the feature vector and SHAP values of p. 12 return (v*,6%) // Best v-pin to move & the amount
10 Re-check the eligibility of both v-pins in p, and
remove p from L if neither v-pin is eligible.
- Re-sort £ by Smax- . i the routing resources permit. This rip-up and reroute procedure
2 break // only move one v-pin at a time ensures a feasible route (if possible) and optimizes the WL.
13 else
14 Remove p from L. . . e
end 5.2 ObfusX with Wire Lifting
: end Wire lifting is the second routing-based technique in ObfusX. It
 end moves wires from the public layers to private layers, and therefore
creates more v-pins, which can make the attack more difficult.
Here, the same flow in Figure 1 is followed. However, instead of
going through the v-pins connecting public and private layers as
in via perturbation, we now consider the vias one layer below (i.e.
all wires connecting to v that do not result in more than two con- the vias connecting the topmost public metal layer and the metal
nected components, while not touching any other v-pins, as shown layer immediately below it). The goal of wire lifting is to make
in Figure 4(b). Then we move v to the new location and identify the it most difficult for the attack model to identify the created v-pin
unconnected parts (i.e. both endpoints of v and the other connected pairs as connected, after lifting. To this end, ObfusX iteratively
components of the net, referred to as “rerouting goals”) in the public selects the via v on this layer which, when lifted above the split
and private portions, respectively, as in Figure 4(c). Finally, we use layer, would create an essential v-pin pair p whose maximal SHAP
A* search algorithm to reconnect the unconnected parts of the net value Smax (p), is the lowest among all options of v.
in the public portion using public layers, and then reconnect for After we select the v-pin v at each iteration, we perform the wire
the private portion using private layers, as shown in Figure 4(d). lifting by applying the same rip up and reroute procedure to v as in
Specifically, the routing graph G(V, E) for A* search is built in three Section 5.1.3, except that (a) we do not move the location of v after
dimensions. The vertices are valid routing grids in all metal layers, ripping up for saving WL, and (b) when rerouting with A* search,
and the edges are in x, y and z directions, corresponding to poten- we put a higher weight on wires in public layers, so that the use of
tial wires (in x and y directions) and vias (in z direction) where public wires is discouraged and thus extra v-pins are created.
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Table 1: Results of via perturbation with ObfusX on the ISPD’11 benchmark suite

1]

Split Desien (£v-ni No obfuscation [4] ObfusX
layer SIgn (*V-PINS) | 11R@001%/0.1% | HR@0.01%/01% AWL%  PN%/PV%  fcpy (h) | HR@0.01%/01% AWL%  PN%/PV% iy (h)
sb1 (44486) 23.79 / 63.33 2.19/11.58 303 99.83/99.58 3.86 0.52/6.12 055  66.57/36.01 3.28
sb5 (60034) 29.47 [ 63.96 5.75 / 20.38 409 96.81/91.75 7.13 434/15.46 0.67  55.62/30.08 5.30
M6 sb10 (89846) 31.84/64.34 10.24 / 2831 452 9245/79.77 7.75 937/ 23.93 071  46.49/ 23.96 8.05
sb12 (80816) 33.01/75.58 8.23 /2478 331  97.70/90.12 6.46 432/ 1167 0.64 73.87/37.12 5.45
sb18 (36026) 20.06 / 66.11 427/ 16.55 264 98.91/94.35 2.88 216/ 8.68 0.67  63.02/34.27 2.06
Average | 27.63 [ 66.66 6.14 /2032 352 97.14/91.11 5.62 4.14/13.17 0.65 61.11/32.29 4.83
sb1 (150510) 49.82 / 68.33 6.46 / 25.37 950 9979/ 93.91 9.00 1.70 / 24.08 214  65.23/35.26 18.90
sb5 (179844) 38.78 / 60.40 754/ 23.84 9.86  96.94/ 87.87 11.48 3.03/23.35 187  51.43/28.09 18.41
Ma sb10 (200896) 33.50 / 60.21 13.16 / 37.36 853 91.38/73.21 15.05 9.81/ 36.54 131 38.81/19.55 17.19
sb12 (173294) 47.07 [ 71.52 9.01/22.40 761 98.61/92.32 13.48 4.42/17.39 112 65.32/32.81 18.09
sb18 (86658) 29.83 / 59.89 5.15/ 17.89 643  99.37/95.29 4.26 1.87 /10.95 153 57.00/30.80 7.18
Average | 39.80 / 64.07 | 8.26 / 25.37 839 97.22/88.52 10.65 | 417/ 22.46 159  55.56/29.30 15.95
100+
6 EXPERIMENTAL RESULTS — ObfusX 001% — ObfusX 0.1%
We obtained the source code of the ML attack from [4], used the _ 801 —[410.01% —[410.1%
-]
shap library for Python for SHAP analysis, and implemented all Y
. - P Q ™~
procedures of ObfusX in C++. Experiments were done on a Linux B h
workstation with an Intel 16-core 3.60 GHz CPU and 64 GB memory. & 401
201 )
6.1 Via Perturbation with ObfusX .
0.6

We first show in Table 1 the performance of via perturbation with
ObfusX using five designs in ISPD’11 benchmark suite that are also
used in [3, 4, 9]. We obtain routed overflow-free designs from [4],
to which we apply the proposed SHAP-based via perturbation, with
parameter r = 3X routing grid size. We compare the performance
and the cost of obfuscation with the via perturbation technique
proposed in [4]. This is based on the same ML attack modell.

We use the following metrics to evaluate the performance and
the cost of an obfuscation?.

o Hit rate (HR) at X%: For a v-pin 0, we first identify the top X%
of other v-pins u which have the highest ML model output
for essential v-pin pair (v, u). These v-pins are predicted by
ML to most likely be the match for u. We call it a “hit” of
v if its real matching v-pin is among the v-pins identified
above. We then report the average percentage of hits of all
v-pins v in the design. We report this metric with X = 0.01
and 0.1. (As a point of reference, X = 0.1 results in up to 89
v-pins identified on split layer M6, or up to 200 v-pins on
split layer M4 in these designs. The total number of v-pins
is quite large as reported in the first column of the table.) A
lower HR means better defense.

o WL overhead (AWL%): percentage of increase in WL after
the obfuscation. Lower is better.

o Perturbed nets (PN%): number of perturbed nets divided by
total number of nets that contain any v-pin. Lower is better.

o Perturbed v-pins (PV%): number of perturbed v-pins divided
by the number of v-pins in the design. Lower is better.

e Total runtime of obfuscation using one CPU core (tcpy).

!Note that the popular network flow attack model [2] takes prohibitively long time to
run on these designs and hence is not applicable here.

ZNote that the functions of standard cells are not available in ISPD’11 benchmark.
Therefore metrics related to circuit outputs (e.g. Hamming distance (HD), output error
rate (OER)) are not applicable.
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Figure 5: Comparison of tradeoff in HR vs WL in superbluel.

Several observations can be made from the results in Table 1.
First, the HR of the ML model for 0.01% and 0.1% v-pin lists drops
drastically after obfuscation; for ObfusX it drops from 28% and 67%
to 4% and 13%, respectively, better than the HR reductions with in
[4]. Second, the WL overhead of ObfusX is less than 1/5 of that
with [4]. Third, with ObfusX, only around 30% of v-pins and 60%
of nets (that contain v-pins) are finally perturbed, compared to
nearly-all nets and v-pins when perturbed with [4].

To observe the tradeoff between performance and cost of obfus-
cation, we plot in Figure 5 the curves of HR and WL overhead with
ObfusX and [4], respectively. Compared to [4], ObfusX achieves
87% and 97% lower HR in 0.1% and 0.01% v-pin lists, respectively,
for the same WL overhead of 0.5%, or is 3-5X more efficient in WL
overhead for the same reduction of HR.

6.2 Wire Lifting with ObfusX

We show in Table 2 the performance and cost of wire lifting with
ObfusX (r =5 pm) on ISCAS’85 benchmark designs, which are often
used in related work, and compare them with [8]. The layouts are
obtained from the authors of [8].

For this benchmark, we use the network flow attack model [2]
which is obtained from the authors. Note that this is not a ML-
based attack model and is not used to build ObfusX. Since the split
layer for each design is not explicitly reported in [8], we tried to
identify it by matching the number of nets on private layers with
the number reported in [8]. ObfusX was applied on six designs for
which we were able to identify the split layer, with WL budget equal
to the reported WL overhead in [8]. The obfuscated layouts are
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Table 2: Results of wire lifting with ObfusX with the ISCAS’85 benchmark suite

Design “Nets No obfuscation [8] ObfusX )
PNR% OER% HD% | PNR% OER% HD% AWL% | PNR% OER% HD% AWL% tcpy (min)
c880 252 100.0 0.0 0.0 91.7 99.9 18.0 4.3 85.3 100.0 23.3 3.4 24
2670 607 95.8 99.9 7.0 871 100.0 14.0 4.4 77.8 100.0 23.5 3.2 7.0
3540 638 97.2 95.4 18.2 93.5 100.0 334 25 84.5 100.0 38.2 25 18.4
3315 997 98.7 98.7 4.3 95.0 100.0 181 1.7 88.9 100.0 23.2 1.7 13.6
c6288 1921 99.8 36.8 3.0 98.6 100.0 421 1.8 95.3 100.0 45.3 1.8 141
7552 1041 99.6 69.5 1.6 95.3 100.0 20.3 2.2 87.5 100.0 27.2 2.2 12.7
Avg. 98.5 66.7 5.7 93.5 100.0 243 2.8 86.5 100.0 30.1 2.5 11.4
Comparing to “No obfus” -5.0 +33.3 +186 -12.0 0 4333 +244

converted to Verilog and their functional equivalency with original
designs is verified with Synopsys Formality. For these designs, we
use the following metrics to evaluate the performance and cost of
an obfuscation.

o Percentage of netlist recovery (PNR) given in [9]: percentage
of correctly reconstructed nets. This quantifies how well the
attack can recover the whole design. Lower is better.

o Output error rate (OER): probability that there is any error
bit in outputs of the reconstructed circuit. Higher is better.

e Hamming distance (HD) between outputs of the original and
the reconstructed circuits. Closer to 50% is better.

o WL overhead (AWL%): percentage of increase in WL after
the obfuscation. Lower is better.

o Total runtime of obfuscation using one CPU core (tcpy).-

We derive OER and HD from 100,000 runs of Monte Carlo simula-
tions with ModelSim. OER and HD of the original design and [8],
and the WL overhead of [8] are quoted from [8]. PNR of the original
design and [8] are derived by definition, based on the design layouts
and the reported numbers in [§].

As can be seen in Table 2, with reasonable computing time of 11
minutes on average, ObfusX reaches 100% for OER, and achieves
better obfuscation in the reduction of PNR (12% vs 5% on average,
or 2.4x better) and the increase in HD (24.4% vs 18.6% on average,
or 31% better), with the same or less WL overhead compared to [8].
Note that the reported results of [8] come from a (best) combina-
tion of three obfuscation techniques including wire lifting and via
perturbation for matching and non-matching v-pins, whereas in
our results wire lifting is applied alone. In fact, our wire lifting and
via perturbation techniques are orthogonal to each other. Therefore,
they may be combined for potentially better performance.

We were not able to make a fair comparison with another related
work [9] because the original layouts of [9] are likely to be very
different from ours and were not made available. (The layouts in
[9] are generated using all 10 metal layers, whereas our layouts
from [8] only occupy 5-9 lower metal layers.)

In summary, for obfuscation with via perturbation, ObfusX is
able to achieve a lower hit rate (indicating better obfuscation) while
perturbing significantly fewer nets and vias in the design, with
significantly lower wirelength. When the same wirelength limit is
imposed during wire lifting, ObfusX performs significantly better
in performance metrics (PNR and HD with equally good OER).

7 CONCLUSIONS

We presented ObfusX, a routing obfuscator for split manufactur-
ing which incorporated SHAP-based analysis to explain a machine
learning attack. The unique benefits of ObfusX were in its ability to
identify the best candidate nets for obfuscation together with the
layout features which make them most vulnerable when subjected
to an attack. As a result, it achieved better performance than prior
work while perturbing significantly fewer nets and with signifi-
cantly lower wirelength during via perturbation. It also achieved
significantly better performance than prior work if the same wire-
length limit was imposed during wire lifting.
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